Системы счисления

Перед математиками и конструкторами в 50-х годах XX столетия встала задача найти такие системы счисления, которые бы отвечали требованиям разработчиков ЭВМ и программного обеспечения. В результате были созданы “машинные” системы счисления:
— двоичная;
— восьмеричная;
— шестнадцатеричная.
Каждая из этих систем использует определенный набор символов языка, которыми записываются данные — символы алфавита.
В двоичной системе счисления их всего два: 0 и 1.
В восьмеричной системе их восемь: 0,1,2,3,4,5,6,7.
В шестнадцатеричной — шестнадцать: арабские цифры 0-9, и символы латинского алфавита от А до F. Причем символ А соответствует 10, В =11 и т.д , F=15.
Каждая система счисления из машинной группы применяется в различных случаях, а именно, двоичная – для организации преобразования информации, восьмеричная и шестнадцатеричная – для представления машинных кодов в удобном виде.
Десятичная система применяется для ввода данных и вывода на устройства печати и на экран дисплея.

Двоичная система счисления

Обработка информации в ПК основа на обмене электрическими сигналами между различными устройствами компьютера. Эти сигналы возникают в определенной последовательности. ПК “различает” два уровня этих сигналов – высокий (1) и низкий (0). Таким образом, любая информация в вычислительной технике представляется как набор (код) двух символов 0 и 1. Каждый такой набор нулей и единиц называется двоичным кодом. Количество информации, кодируемое двоичной цифрой – 0 или 1 – называется битом. Бит является единицей измерения информации.
Двоичная система счисления обладает такими же свойствами, что и десятичная, только для представления чисел используется не 10 цифр, а всего 2. Эта система счисления тоже является позиционной.
Официальное рождение двоичной арифметики связано с именем Г.В. Лейбница, опубликовавшего в 1703 г. статью, в которой он рассмотрел правила выполнения арифметических действий над двоичными числами.
Из истории известен курьезный случай с восьмеричной системой счисления. Шведский король Карл XII в 1717 году увлекался восьмеричной системой счисления, считал ее более удобной, чем десятичная, и намеревался королевским приказом ввести ее как общепринятую. Неожиданная смерть короля помешала осуществить столь необычное намерение.

Восьмеричная и шестнадцатиричная системы счисления

Двоичные числа – длинные последовательности 0 и 1 – очень неудобны для восприятия. В связи с этим двоичные числа стали разбивать на группы по три (триада) или четыре (тетрада) разряда. Из трех нулей и единиц можно составить восемь различных двоичных чисел, а из четырех – шестнадцать. Для кодирования 3 бит требуется 8 цифр, и поэтому взяли цифры от 0 до 7, т.е. в соответствии с определением получили алфавит 8-ной системы счисления.

Восьмеричный алфавит Двоичное число (триада)
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Для кодирования 4 бит необходимо 16 знаков, для чего используются 10 цифр десятичной системы и 6 первых букв латинского алфавита.

Шестнадцатеричный алфавит Двоичное число (тетрада)
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
A 1010
B 1011
C 1100
D 1101
E 1110
F 1111

Представление чисел в различных системах счисления

10-ная 2-ная 8-ная 16-ная
0 00 0 0
1 01 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10

ПЕРЕВОД ЧИСЕЛ ИЗ N-РИЧНОЙ СИСТЕМЫ В ДЕСЯТИЧНУЮ

Перевод чисел из одной системы счисления в другую выполняет компьютер. Эти операции выполняются по определенным правилам.

Перевод числа из двоичной системы счисления в десятеричную:

1) пронумеровать двоичный код начиная с младшего разряда (его номер равен 0) к старшему;
2) записать двоичное число как сумму произведений веса каждого разряда на основание системы счисления исходного числа (2) в степени, соответствующей номеру разряда;
3) выполнить вычисление произведений и суммы.
Например,
1010112 = 1*25+0*24+1*23+0*22+1*21+1*20 = 32+0+8+0+2+1=4310

Перевод числа из любой n-ричной системы счисления в десятеричную выполняется с описанным выше правилом (следует учесть, что для каждой системы счисления основание системы свое).

Задание:
Выполните перевод следующих чисел в десятичную:
123708 — ?10

ПЕРЕВОД ЧИСЕЛ ИЗ ДЕСЯТИЧНОЙ СИСТЕМЫ В N-РИЧНУЮ

Перевод числа из десятеричной в двоичную систему счисления:

1) выполнить последовательное деление десятичного числа, а затем получаемых целых частных на основание системы счисления, в которую переводится число (2). Деление выполняется в записью целого частного и целого остатка от деления до тех пор, пока целое частное не будет равно 0.
2) записать код числа, записывая остатки от деления, начиная с последнего из целых остатков (в обратном порядке) символами алфавита требуемой системы счисления.

Например,4210 — ?24210 = 1010102  

Перевод числа из десятеричной в n-ричную систему счисления:

1) выполнить последовательное деление десятичного числа, а затем получаемых целых частных на основание системы счисления, в которую переводится число (n). Деление выполняется в записью целого частного и целого остатка от деления до тех пор, пока целое частное не будет равно 0.
2) записать код числа, записывая остатки от деления, начиная с последнего из целых остатков (в обратном порядке) символами алфавита требуемой системы счисления.

Задание:
выполните перевод десятичных чисел 54 и 782
в 8-ричную и 16-ричную системы счисления каждое.

ПЕРЕВОД ЧИСЕЛ ИЗ ДВОИЧНОЙ СИСТЕМЫ В ВОСЬМЕРИЧНУЮ И ШЕСТНАДЦАТЕРИЧНУЮ

Правило перевода чисел из двоичной системы счисления в восьмеричную:

влево и вправо от запятой двоичное число разбивается на двоичные триады, при необходимости крайние группы дополняются нулями; каждая триада заменяется соответствующей цифрой восьмеричного алфавита (см. таблицу).

100010011,112 = ?8 100 010 011, 1102 =423,68
  4 2 3 6  

Правило перевода чисел из двоичной системы счисления в шестнадцатеричную:

влево и вправо от запятой двоичное число разбивается на двоичные тетрады, при необходимости крайние группы дополняются нулями; каждая тетрада заменяется соответствующей цифрой шестнадцатеричного алфавита (см. таблицу).

11111100011,1010102 = ?16 0111 1110 0011, 1010 1000 = 7Е3,А816
  7 Е 3 А 8  

При переводе чисел из восьмеричной и шестнадцатеричной систем счисления в двоичную достаточно заменить каждую цифру соответственно двоичной триадой или тетрадой. При этом незначащие нули отбрасываются.
Примеры: 324,78 — ? 2
3 2 4, 78 = 11010100,1112

Е4А1, В516 — ?2
Е 4 А 1, В 516 = 1110010010100001,101101012

ПЕРЕВОД ЧИСЕЛ ИЗ ВОСЬМЕРИЧНОЙ И ШЕСТНАДЦАТЕРИЧНОЙ СИСТЕМЫ В ДВОИЧНУЮ

При переводе чисел из восьмеричной и шестнадцатеричной систем счисления в двоичную достаточно заменить каждую цифру соответственно двоичной триадой или тетрадой. При этом незначащие нули отбрасываются.

Примеры:

324,78 — ? 2 3 2 4, 78 = 11010100,1112  
  011 010 100 111    

 

Е4А1, В516 — ?2 Е 4 А 1, В 516 = 1110010010100001,101101012
  1110 0100 1010 0001 1011 0101  

АРИФМЕТИЧЕСКИЕ ДЕЙСТВИЯ В ДВОИЧНОЙ СИСТЕМЕ

С цифрами двоичного числа можно выполнять арифметические операции. При этом выполняются правила двоичной арифметики:

0+0=0 0*0=0
1+0=1 1*0=0
0+1=1 0*1=0
1+1= 0 (+ перенос единицы
в старший разряд)
1*1= 1

Все арифметические операции над двоичными числами можно свести к 2-м операциям: сложению и сдвигу кодов. Это позволяет технически реализовать четыре арифметических действия в одном арифметико-логическом устройстве, используя одни и те же электронные схемы. Впрочем, и в десятичной арифметике в конечном итоге выполняются те же действия – сложение и сдвиг.

Cложение двоичных чисел

Выполним сложение двух двоичных чисел 110012 и 100012

+   1 1 0 0 1
    1 0 0 0 1
  1 0 1 0 1 0

Задание:
Самостоятельно выполните сложение двоичных чисел:
111002 и 100111112

Вычитание двоичных чисел

Вычитание – обратная операция сложению так же может быть представлена в виде сложения, но только с отрицательным числом.
Выполним вычитание двух двоичных чисел 11001и 100012

1 1 0 0 1
  1 0 0 0 1
    1 0 0 0

Задание:
выполните вычитание двух чисел 101110и 10012

Умножение и деление двоичных чисел

Умножение и деление производится поразрядно и сводятся к двум операциям: сложению и сдвигу.
Выполним умножение двоичных чисел 110012 и 10012

        * 1 1 0 0 1
            1 0 0 1
          1 1 0 0 1
        0 0 0 0 0  
      0 0 0 0 0    
    1 1 0 0 1      
    1 1 1 0 0 0 0 1


Задание:
самостоятельно перемножьте числа 1110
2 и 100012

Деление так же можно представить как выполнение операций сложения и сдвига.

Задание:
выполните самостоятельно деление двоичного числа 1100110 на двоичное число 110

АРИФМЕТИЧЕСКИЕ ДЕЙСТВИЯ В ВОСЬМЕТИЧНОЙ И ШЕСТНАДЦАТИРИЧНОЙ СИСТЕМЕ

Сложение и вычитание в 8-ной и 16-ной системах счисления

При выполнении действий сложения и вычитания в 8-ной системе счисления необходимо помнить:
в записи результатов сложения и вычитания могут быть использованы только цифры восьмеричного алфавита;
основание восьмеричной системы счисления равен 8, т.е. переполнение наступает, когда результат сложения больше или равен 8. В этом случае для записи результата надо вычесть 8, записать остаток, а к старшему разряду прибавить единицу переполнения;
если при вычитании приходится занимать единицу в старшем разряде, эта единица переносится в младший разряд в виде 8 единиц.
Примеры.
Сложить восьмеричные числа 7708 и 2368 .

    1 1  
  + 7 7 0
    2 3 6
  1 2 2 6


Примеры на закрепление: выполнить действия в восьмеричной системе счисления.
715
8 + 3738
5248 + 578

Выполнить вычитание восьмеричных чисел 7508 и 2368.

      4 8
  _ 7 5 0
    2 3 6
    5 1 2

 

Примеры на закрепление: выполнить действия в восьмеричной системе счисления.
1378 — 72,38
4368 — 2578

При выполнении действий сложения и вычитания в 16-ной системе счисления необходимо помнить:
в записи результатов сложения и вычитания могут быть использованы только цифры шестнадцатеричного алфавита (0-9, A-F)
Основание шестнадцатеричной системы счисления равно 16, т.е. переполнение наступает, когда результат сложения больше или равен 16. В этом случае для записи результата надо вычесть 16, записать остаток, а к старшему разряду прибавить единицу переполнения;
если при вычитании приходится занимать единицу в старшем разряде, эта единица переносится в младший разряд в виде 16 единиц.

Примеры.
Сложить шестнадцатеричные числа B0916 и EFA16

    1 1  
  + B 0 9
    E F A
  1 A 0 3

Примеры на закрепление: выполнить действия в шестнадцатеричной системе счисления.
A1316 + 1CF16
F0B,816 + 1DA,C116

Выполнить вычитание шестнадцатеричных чисел B0916 и 7FA16.

   

10

15

16

 

_

B

0

9

   

7

F

A

   

3

0

F

Примеры на закрепление: выполнить действия в шестнадцатеричной системе счисления.
A1316 — 1CF16
DFA,B816 — 1AE,9416

 

Добавить комментарий